
塩分吸着型エポキシ樹脂コンクリート補修材 ハイブリッドエポキシ樹脂

はじめに

コンクリート補修材料

補修材料の性能比較

		適用できる補修工法						性		能				
補修材料の種別	材料	注入工法	表面被覆工法	充填工法	塗 布 エ 法	乾燥面への接着性	湿潤面への接着性	可焼性	耐久性	耐水性	耐アルカリ性	1) 収 縮 性	作業性	経済性
樹脂系	エポキシ樹脂	0	0	0	0	0	0	0	0	0	0	0	0	0
	アクリル樹脂	0	0	0	Δ	0	0	Δ	0	0	0	Δ	Δ	Δ
	ポリウレタン樹脂	0	Δ	Δ	×	0	0	0	0	0	0	0	0	0
	ポリエステル樹脂	0	4	4	×	0	Δ	Δ	0	0	×	Δ	0	0
セメント系・	超微粒子セメント	0	Δ	Δ	×	Δ	Δ	Δ	0	0	0	0	0	0
	ポリマーセメント	0	0	0	×	0	0	0	0	0	0	0	0	0

◎:優 ○:良 △:可 ×:不可

1) コンクリート補修講座:日経 BP 社、2004. 4. 30、2) 14504 の化学商品:化学工業日報社、2004. 1. 27

コンクリートに対する<mark>接着性、耐久性、小さい硬化収縮率</mark>等の点から、 補修材料としてエポキシ樹脂が用いられることが多い。

ハイブリッドエポキシ樹脂とは?

エポキシ樹脂

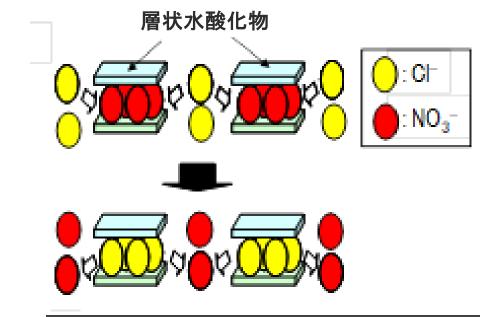
機能性吸着材

エポキシ樹脂に 機能性吸着材を20%添加

ハイブリッドエポキシ樹脂

エポキシ樹脂従来の品質

&

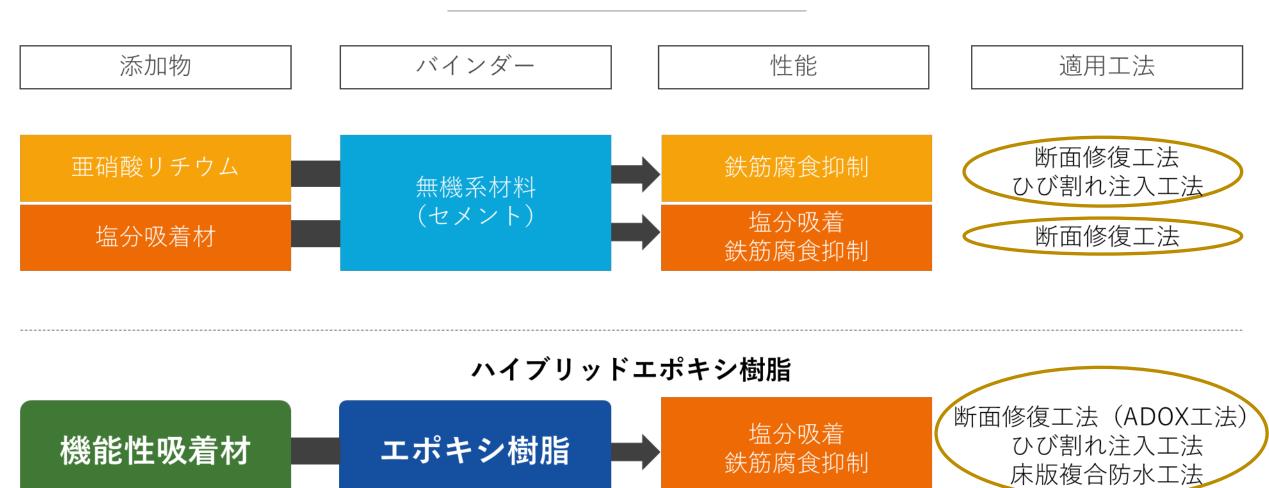

- 塩分吸着性能
- 鉄筋腐食抑制効果

塩害対策補修材料

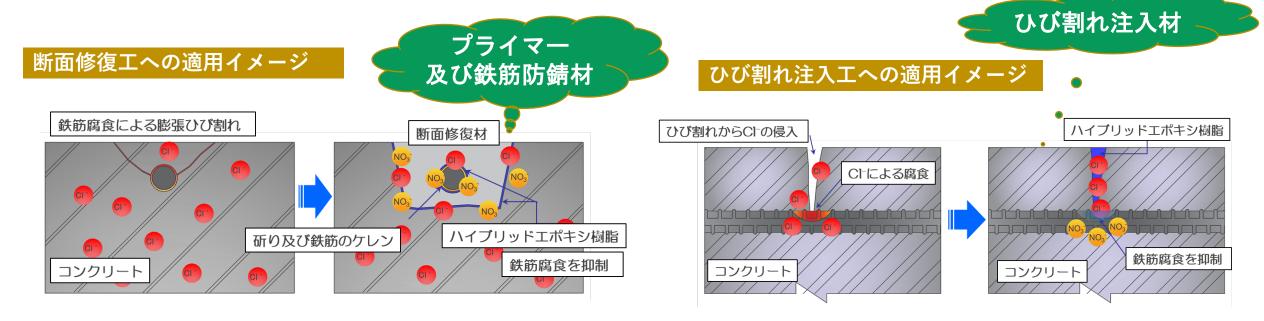
(港湾構造物や凍結防止剤が散布された橋梁等)

塩分吸着材 (機能性吸着材)

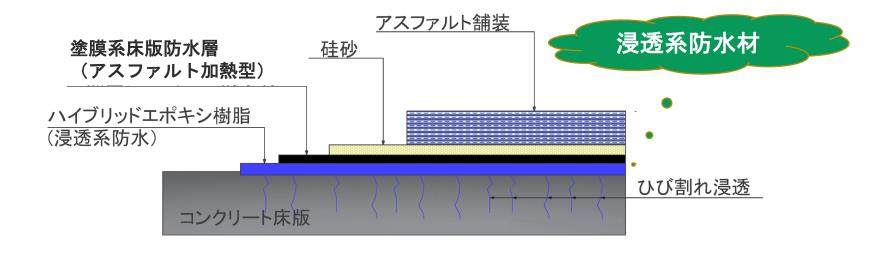
- ▶ 層状複水酸化物の一種
- ▶ 鉄筋腐食の原因となる塩化物イオン(CI⁻)を吸着し、 層間に保持している硝酸イオン(NO₃⁻)を交換放出
- ▶ 放出された硝酸イオン (NO₃-) は鉄筋腐食を抑制


層状複水酸化物のイオン交換イメージ

ハイブリッドエポキシ樹脂のタイプ及び規格


タイプ及び規格				15004000044	10004000111		* 4540	4540
				ADOX1380WH	ADOX1380LH	ADOX1380WLH	コンクレッシフ゛1510 II H	コンクレッシフ゛1510 II LH
浸透型				0		0		
速硬化型(-5°Cで使用可)				0			0	
	硬質形	低粘度形-	一般用					
JIS A 6024			冬用	0	\circ			
建築補修用及び建築補強用エポキシ樹脂	軟質形	低粘度形.	一般用					
	料貝ル	以相反が	冬用					
NEXCO構造物施工管理要領	1種		0	0				
NEACO構造物施工官珪安領 ひび割れ注入工法用エポキシ樹脂系ひび割れ注入材		2種						
のいまれた人工法用エホイン倒加米のいまれた人物		3種						
NEXCO構造物施工管理要領 鉄筋防錆材の品質規格				0	0			
適用先				ひび割れ注入材 プライマー 鉄筋防錆剤 浸透系防水材	ひび割れ注入材 プライマー 鉄筋防錆剤	プライマー 鉄筋防錆剤	ひび割れ注入材	ひび割れ注入材

- ▶ ひび割れ注入材 ⇒ ひび割れ注入工法
- ▶ プライマー及び鉄筋防錆材 ⇒ 断面修復工法(ADOX工法)
- ▶ 浸透系防水材 ⇒ 床版複合防水工法


既存の塩害対策補修材料

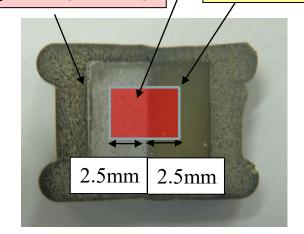
ハイブリッドエポキシ樹脂の適用イメージ

床版複合防水工への適用イメージ

ハイブリッドエポキシ樹脂の特性

塩分吸着性能

<検証方法>

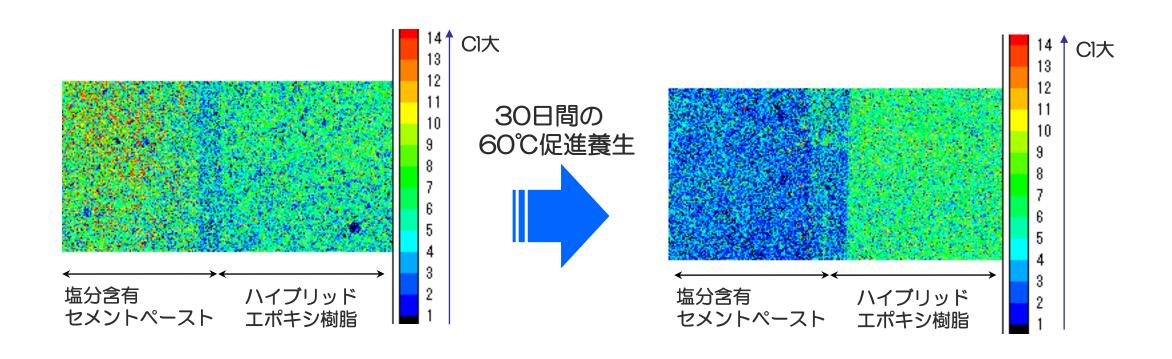

5mm 5mm 塩分含有セメントペースト

- ・水セメント比60%
- 塩化物イオン量1.2kg/m³の 塩化ナトリウム混入

EPMA分析範囲

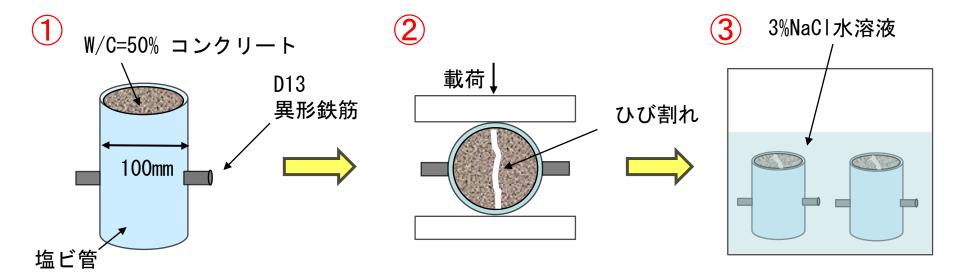
塩分含有セメントペースト

ハイブリッドエポキシ樹脂

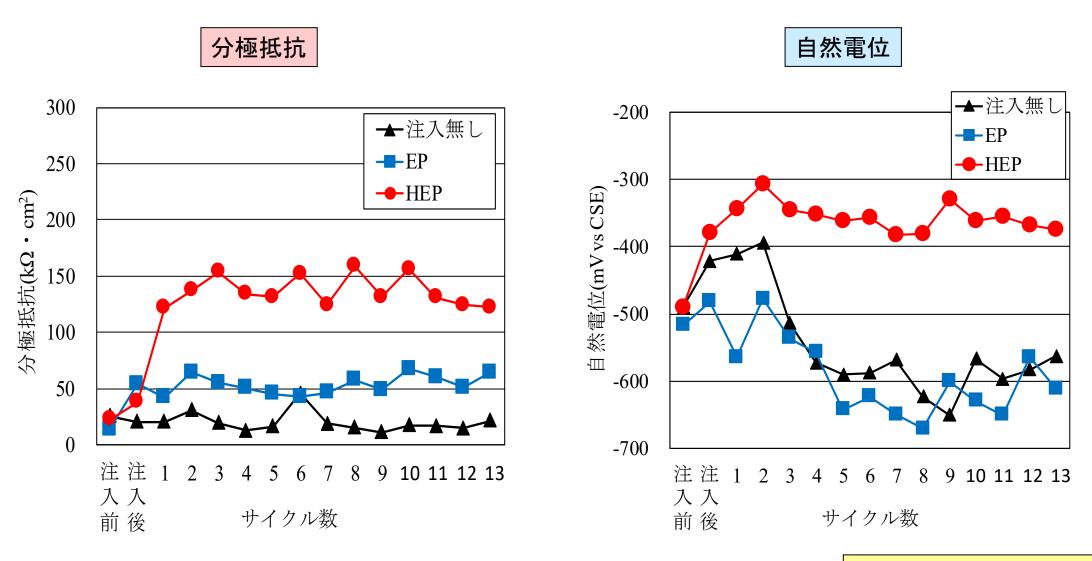


- ・試験体作製⇒23℃で45日間⇒EPMA分析(初期値)
- ・60°C恒温槽で30日間促進養生し⇒EPMA分析

EPMA分析により、塩化物イオン(CI-)のCを可視化


ハイブリッドエポキシ樹脂

▶ 塩分含有セメントペーストのCIが大きく減少(ハイブリッドエポキシ樹脂に移動)


鉄筋腐食抑制効果

<検証Ⅰ>

- 4 ハイブリッド エポキシ樹脂注入
- ① Φ100塩ビ管にW/C=50%のコンクリートを打設
- ② 割裂引張にて幅0.7~1.0mmの(先行型)ひび割れを模擬
- ③ 40°C恒温槽にて、3%NaCl水溶液に1日浸漬、乾燥1日を2サイクル
- ④ 分極抵抗と自然電位を計測し、鉄筋腐食度を確認後に ハイブリッドエポキシ樹脂「ADOX1380WH」を注入
- ⑤ NaCl水溶液に3日浸漬、4日乾燥を1サイクルとした供試体の分極抵抗と自然電位を1週毎に計測
- *塩分吸着材を添加していないエポキシ樹脂、何も注入を施していないケースについても実施

▶ ハイブリッドエポキシ樹脂注入により、鉄筋は腐食環境から防錆環境へ移行

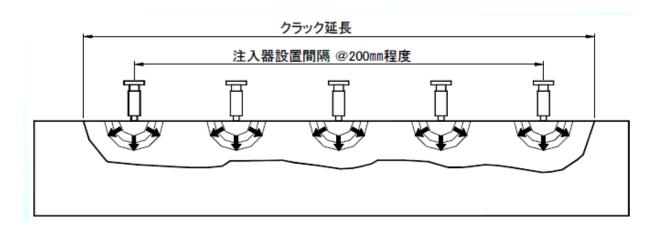
EP ; エポキシ樹脂

| HEP; ハイブリッドエポキシ樹脂

<検証Ⅱ>

▶ 塩水につけた鉄筋

▶ 塩水につけた鉄筋に乾燥後 エポキシ樹脂を塗布

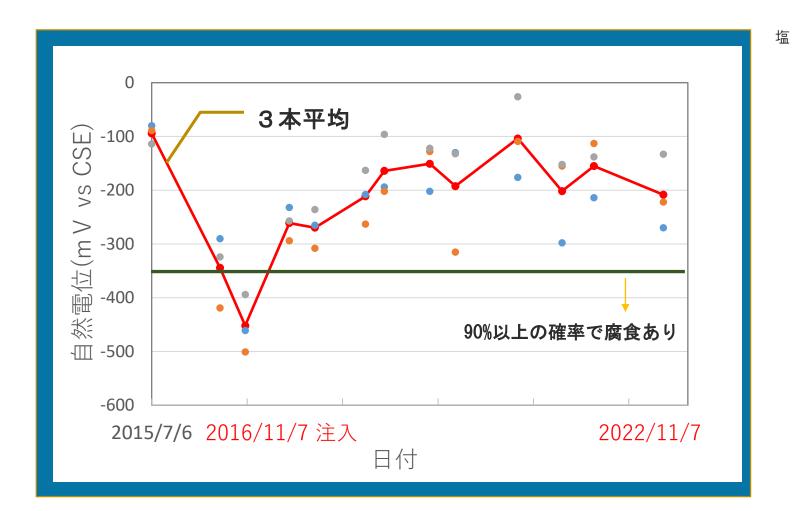

▶ 塩水につけた鉄筋に乾燥後 ハイブリッドエポキシ樹脂を塗布

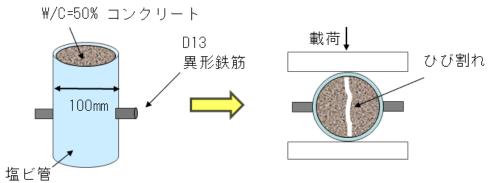
各種工法への適用内容及び事例

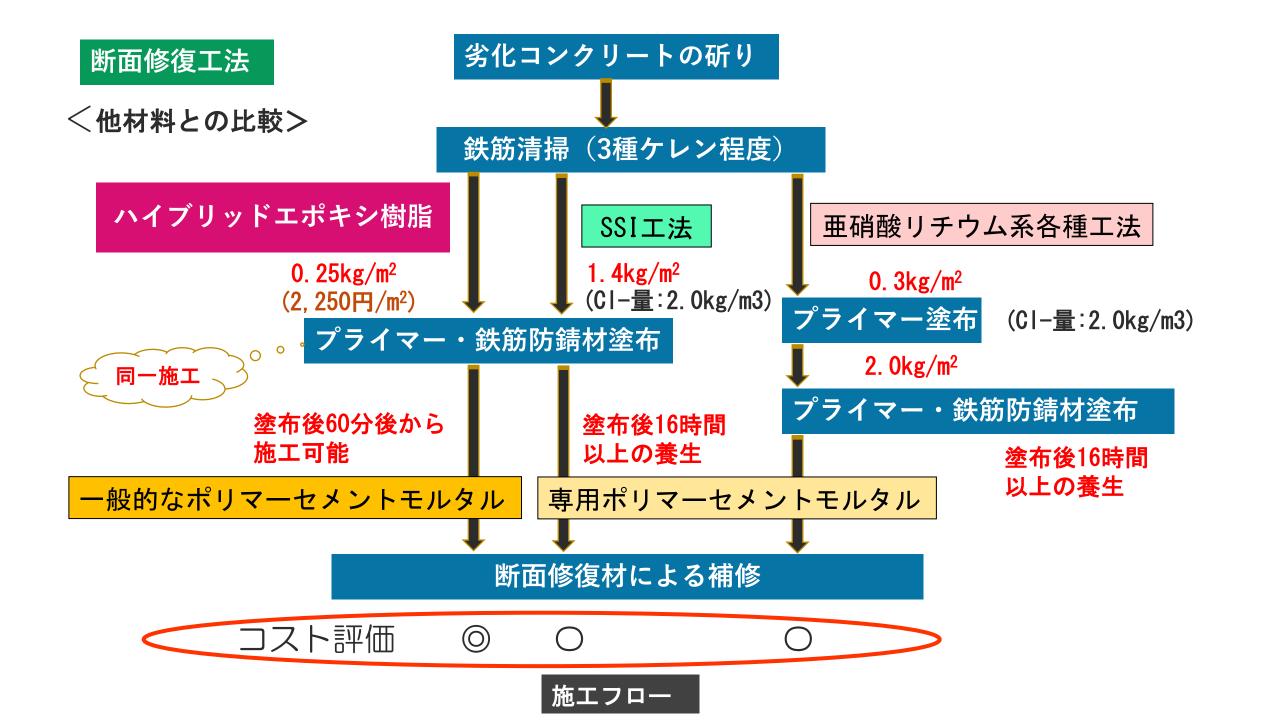
ひび割れ注入工法

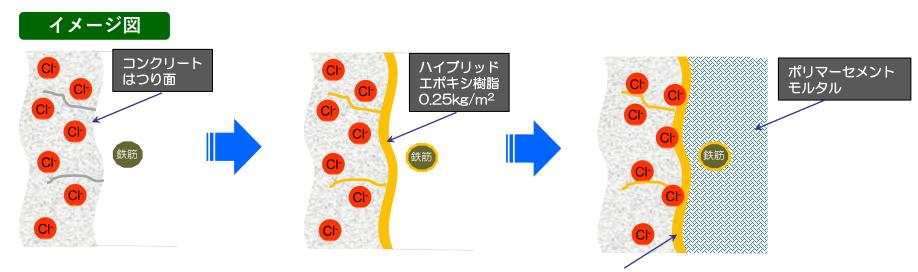
	速硬化 AD0X1	タイプ 380WH	標準タイプ AD0X1380LH			
環境温度	-5 ~ 5°C	5℃以上	-5 ~ 5°C	5°C以上		
注入工法	機械式 自動式	機械式	_	機械式 自動式		

自動式低圧注入工法のイメージ


< 自動式低圧注入工の施工状況> 埠頭の補修・補強工事



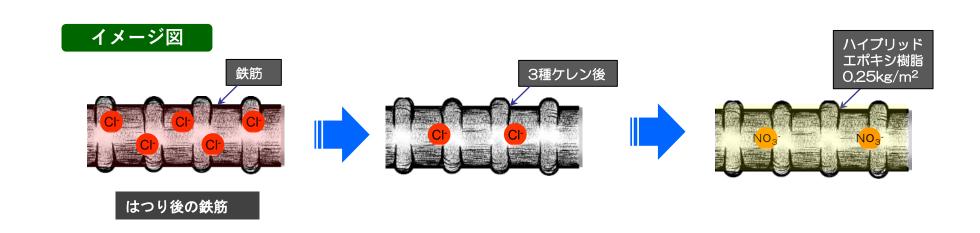

供試体による暴露試験結果(北海道 日本海に面した暴露場)



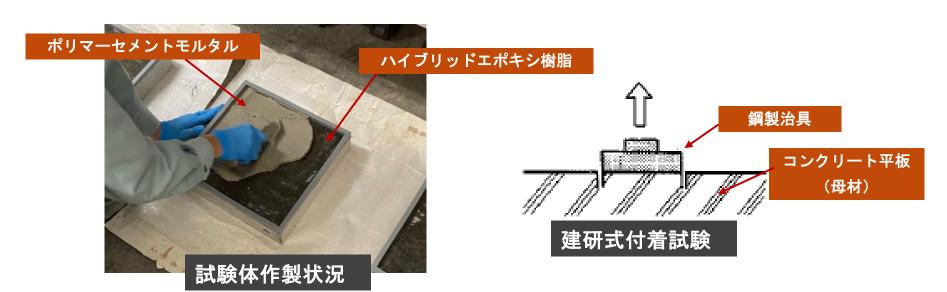
塩害対策断面修復工法(ADOX工法)

~プライマー及び鉄筋防錆材にハイブリッドエポキシ樹脂の使用~

標準使用量: 0.25kg/m²


- ★ ハイブリッドエポキシ樹脂のプライマーとしての役割
 - ▶ はつり作業等のマイクロクラックへ含侵し、塩化物イオン(CI-)を吸着
 - ▶ はつり面からポリマーセメントモルタルへの塩化物イオン (CI-) 拡散の遮断
 - ▶ はつり面とポリマーセメントモルタルの付着力の強化

ハイブリッドエポキシ樹脂のCl拡散係数: セメント系材料に比べて非常に小さいO.OO1cm²/年以下 * 鹿児島大学による塩化物イオン透過性試験結果から


★ ハイブリッドエポキシ樹脂の鉄筋防錆材としての役割

- ▶ 鉄筋腐食の原因となる塩化物イオン(CI-)を吸着し、硝酸イオン(NO₃-)を交換放出
- ▶ 放出された硝酸イオン(NO₃-)が鉄筋腐食を抑制

付着性

試験結果

樹脂塗布後	付着強度 (N/mm²)					
養生時間	σ7	σ28				
60分	2. 4	2. 8				
180分	2. 4	3.0				

壁(1×1.5m)の施工性試験

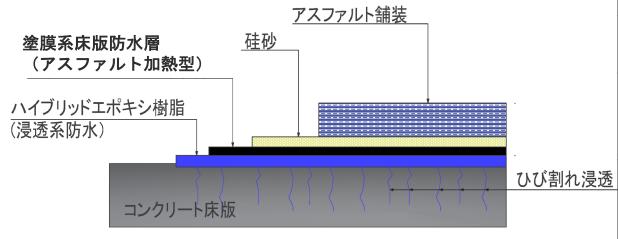
実施工によるモニタリング結果① (自動車道C-BOX)

鉄筋位置の全塩化物イオン量は2.25~2.99kg/m³

実施工によるモニタリング結果② (青森県 日本海に面した側道橋 床版地覆)

鉄筋位置の全塩化物イオン量は6.4kg/m³

ハイブリッドエポキシ樹脂塗布


自然電位測定結果

床版複合防水工法

複合防水層の品質【(社)日本建設機械施工協会 施工技術総合研究所による試験結果】

床版複合防水工への適用イメージ

試験項目	試験	規格値	ハイブリッド エポキシ樹脂	判定	
	温度		ADOX1380WH		
防水性試験 I	23°C	減水量0.2m2以下	0. 0	0	
ひび割れ追従性	−10°C	追従ひび割れ限界0.3mm以上	0. 6	0	
試験Ⅱ	−20°C	追従ひび割れ限界0.3mm以上	0. 7	0	
	23°C	強度0.6N/mm ² 以上	0.8	0	
引張接着試験	−10°C	強度1. 2N/mm ² 以上	1.8	0	
	−20°C	強度1. 2N/mm ² 以上	1. 9	0	
	23°C	強度0.15N/mm ² 以上	0. 3	0	
		変位量1.0mm以上	3. 4	0	
せん断試験	-10°C	強度0.8N/mm ² 以上	3. 2	0	
		変位量0.5mm以上	1. 4	0	
		強度0.8N/mm ² 以上	3. 6	0	
		変位量0.5mm以上	1.0	0	
水浸引張接着試験	23°C	水浸前の50%以上	118	0	
· · · · · · · · · · · · · · · · · · ·	23°C	耐アルカリ性	異常なし	0	
耐薬品性試験	23 C	耐塩水性	異常なし	0	

[・]試験方法は「道路橋床版防水便覧」((社)日本道路協会H19.3)表-4.2.2基本照査試験に準拠。

※ 東亜道路工業(株)社製 加熱型アスファルト防水材と組合わせた試験結果